

FuSuMaTech-2.1-DE-08-V1.0

Future Superconducting Magnet Technology

H2020-FETOPEN-2016-2017/H2020-FETOPEN-3-2017

Grant Agreement Number n° 766974

DELIVERABLE D 2.1

REPORT ON STATE OF THE ART SUPERCONDUCTING MAGNETS

	Edited by	Revie	ewed by	Approved by
Name	Gijs DE RIJK	Sylvain Roux		Antoine Daël
Functions	Head of Magnet Design Technology section, (TE-MSC- MDT, CERN)	Project Manager (CEA)		Project Coordinator (CEA)
Date and visas	18/12/2018	18/12/2018		18/12/2018

		HISTORY OF	CHANGES		
Version	Publication date	Change	Edited by	Reviewed by	Approved by
0.1	17/12/2018	First version	Gijs DE RIJK	Sylvain Roux	Antoine Daël
1.0	18/12/2018	Final version	Gijs DE RIJK	Sylvain Roux	Antoine Daël

	PROJECT DELIV	ERABLE INFORMATION SHEET
	Project Reference	N° 766974
	Project Title	FuSuMaTech - Future Superconducting Magnet Technology
	Project website	http://fusumatech.web.cern.ch
	Deliverable No	2.1
FuSuMaTech Project	Deliverable type	Report
	Dissemination Level	Public
	Contractual Delivery Date	22/12/2018
	Actual Delivery Date	22/12/2018
	EC Project Officer	Adriana GODEANU-METZ

FuSuMaTech-2.1-DE-08-V1.0

TABLE OF CONTENTS

Tab	le of contents	3
1.	INTRODUCTION	4
2.	Organisation of the Magnet Catalogue	4
3.	Milestone MS3 "Available inventory of highfield superconducting magnets"	4
4.	Conclusions	4
5.	Spread sheet	5
6.	Catalogue	6

FuSuMaTech-2.1-DE-08-V1.0

1. INTRODUCTION

Magnets are in use for a large variety of applications ranging from the study of basic properties of matter, the study of complex organic molecules, material testing, particle accelerators, particle spectrometers, medical diagnosis equipment and medical irradiation machines. Since a few decades more and more types of magnets are commercially available. Initially only resistive magnets were available but since the 1970-ies also an increasing number of superconducting magnet types can be procured off-the-shelf. This document presents a catalogue of most commercially available magnet types. Both off-the-shelf and build-to-drawing magnets are listed as in this field there is a close interaction between the suppliers and the clients in developing the products.

2. ORGANISATION OF THE MAGNET CATALOGUE

The catalogue is based on a 'mother' spread-sheet containing all the numerical and text data for each type of magnet. From this spread-sheet an individual page is generated for each entry into which diagrams, drawings and pictures can be added. The catalogue is not a final, complete, document but is intended to grow over time and gain in completeness. The catalogue should be published on a public web page and can be used by all interested parties as a source of data on magnets.

3. <u>MILESTONE MS3 "AVAILABLE INVENTORY OF HIGHFIELD</u> <u>SUPERCONDUCTING MAGNETS"</u>

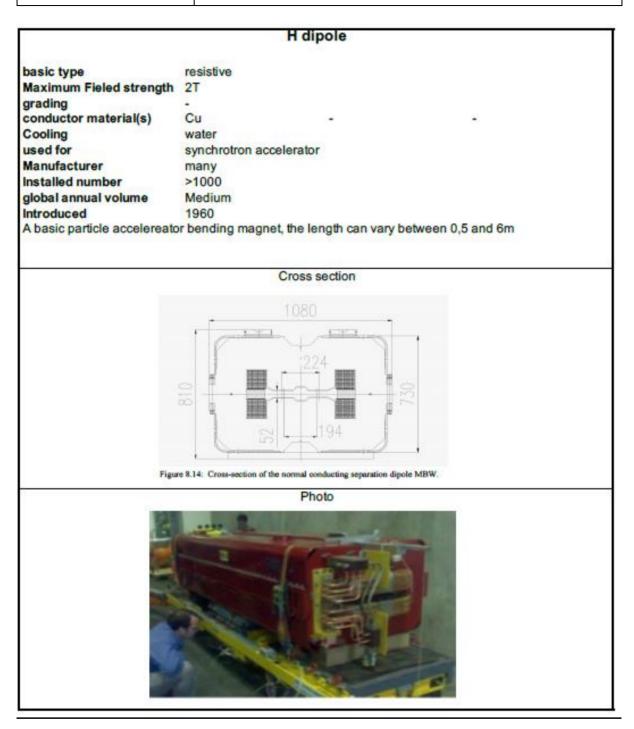
The initially foreseen one day workshop to consult experts to make an inventory for the catalogue was replaced by a series of direct consultations of nearby experts at CERN and at TESLA. These discussions were sufficient to cover the need of expert consultations.

4. CONCLUSIONS

The latest developments in magnet technology are in two domains: pushing the high field limits using the Low Temperature Superconductors Nb-Ti and Nb₃Sn and very innovative developments with High Temperature Superconductors. With these LTS conductors new accelerator magnets, NMR and MRI magnets have recently been realised. Especially for the NMR and MRI magnets these have led and will lead on the short to medium term to new products in the medical and research magnet domain. With HTS conductor the translation to eg. commercial research magnets is imminent and risks to lead to a real breakthrough in the field.

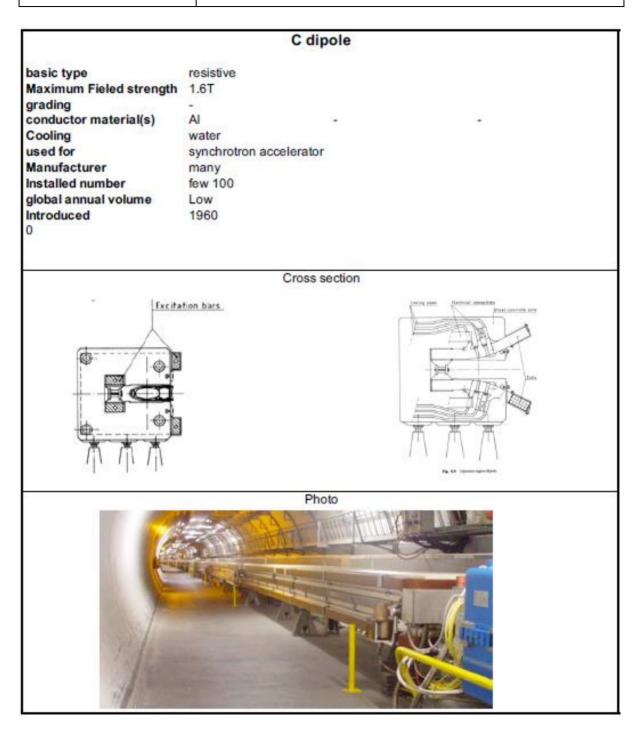
FuSuMaTech-2.1-DE-08-V1.0

5. SPREAD SHEET


	pict /						conductor			Maximum nominal	Annua	nstalled			
ode	xsect	application	Basic type	type	grading		material 2	material 3	cooling	field	Volume		Introduced Mar		
	p/x	synchrotron accelerator	resistive	H dipole	-	Cu	-	-	water	2T	Medium	>1000	1960 mar		A basic particle accelereator bending magnet, the length can vary between 0,5 and 6n
\-R-2		synchrotron accelerator	resistive	H dipole	-	AI	-	-	water	2T	Low	few 100	1960 mar		
-R-3			resistive	C dipole	-	Cu	-	-	water	1.6T	Medium	>1000	1960 mar		
-R-4		synchrotron accelerator		C dipole combined function dipole	-	Al Cu	-	-	water water	1.6T 1.6T	Low	few 100 few 100	1960 mar 1959 mar		
	D	synchrotron accelerator synchrotron accelerator		combined function dipole	-	Al	-	-	water	1.6T	Low	few 100	1959 mar		
	x	synchrotron accelerator		cuadrupole	-	Cu	-	-	water	1.5T on the pole	Medium	>1000	1960 mar		
	p/x	synchrotron accelerator		double aperture quadrupole	-	Cu	-	-	water	1.5T on the pole	Low	few10	1960 mar		
-R-9	p/A	synchrotron accelerator		quadrupole	-	Al			water	1.5T on the pole	Low	few 10	1960 mar		
A-R-10	D	synchrotron accelerator		sextupole		Cu		-	water	1T on the pole	Low	few 10	1960 mar		
A-R-11		synchrotron accelerator		octupole	-	Cu		-	water	1T on the pole	Low	few 10	1960 mar		
A-R-12		synchrotron accelerator		low field C dipole	-	Cu	-	-	water	0.5T	Low	few 10	1960 mar		
A-R-13		synchrotron accelerator		corrector dipole	-	Cu	-	-	air	0.5T	Low	few 100	1960 mar	y y	
-R-14		synchrotron accelerator	resistive	corrector quadupole	-	Cu	-	-	air	0.5T on the pole	Low	few 10	1960 mar	у	
-R-15		synchrotron accelerator		HO corrector	-	Cu	-	-	air	0.5T on the pole	Low	few 10	1960 mar		
-R-16		synchrotron accelerator		focusing solenoid	-	Cu	-	-	air	1T	Low	few 100	mar		
-R-17		synchrotron accelerator		focusing solenoid	-	Cu	-	-	water	2T	Low	few 100	mar		
-R-18		synchrotron accelerator		lambertson septum	-	Cu	-	-	water	1.2T	Low	few 10	mar		
-R-19		synchrotron accelerator		pulsed septum	-	Cu	-	-	water	1T	Low	few 10	mar		
-R-20		synchrotron accelerator		wiggler	-	Cu/AI	-	-	water	2T	Medium	few 100	1966 mar		
-P-1 -P-2		synchrotron accelerator		undulator	-		-	-	none	0.5T 2T on the pole	Medium	few 100	1953 mar	У	
	p/x	synchrotron accelerator synchrotron accelerator		sextupole dipole	- no	Nb-Ti	-	-	none He	21 on the pole 6T	Low				
A-S-2	P*A	synchrotron accelerator		double aperture dipole	no	Nb-Ti	-		Не	6T	Low				
4-3-2 4-S-3		synchrotron accelerator		dipole	yes	Nb-Ti	- Nb-Ti	-	He	9T	Low				
	p/x	synchrotron accelerator		double aperture dipole	yes	Nb-Ti	Nb-Ti	-	He	9T	Low				
	p/x	synchrotron accelerator		quadrupole	yes	Nb-Ti	Nb-Ti		He	9T on the pole	Low				
	p/x	synchrotron accelerator		double aperture quadrupole		Nb-Ti	Nb-Ti		He	9T on the pole	Low				
A-S-7		synchrotron accelerator		sextupole	no	Nb-Ti	-	-	He	3.5T on the pole	Low				
	р	synchrotron accelerator		octupole	no	Nb-Ti	-	-	He	1.4T on the pole	Low				
	р	synchrotron accelerator		HO corrector	no	Nb-Ti	-	-	He	1.4T on the pole	Low				
-S-10		synchrotron accelerator		dipole	no	Nb ₃ Sn	-	-	He	14.6T	Low				
-S-11	p/x	synchrotron accelerator		quadrupole	no	Nb ₃ Sn	-	-	He	12T on the pole	Low				
\-S-12		synchrotron accelerator		focusing solenoid	no	Nb-Ti	-	-	He	4T	Low				
\-S-13		synchrotron accelerator		focusing solenoid	no	Nb ₃ Sn	-	-	He	12T	Low				
A-S-14		synchrotron accelerator		Pipetron dipole	no	Nb-Ti	-	-	He	1.8T	Low				
A-S-15			Superconducting	wiggler	-	Nb-Ti	-	-	He	6T	Low	few 100	mar		
-P-1		Linear Accelerator Linear Accelerator	permanent resistive	quadrupole solenoid	-	Cu	-	•	none water	2T on the pole 2T	Low Medium	few 100 >1000	mar mar		
		Linear Accelerator	Superconducting	solenoid	-	Nb-Ti	-	-	He	4T	Low	few 10	mar		
S-R-1	n	particle spectrometer	resistive	spectrometer dipole	-	Cu	-	2	water	2T	LOW	lew to	mai	y	
S-R-2	P	particle spectrometer	resistive	spectrometer solenoid		Cu	-	-	water	2T					
	D	particle spectrometer	Superconducting	spectrometer dipole	no	Nb-Ti	-		He	2T					
	D	particle spectrometer	Superconducting	spectrometer solenoid	no	Nb-Ti	-		He	4T					
S-R-3	r	particle spectrometer	resistive	spectrometer toroid	-	Cu	-	-	water	1T					
S-S-3	p/x	particle spectrometer	Superconducting	spectrometer toroid	no	Nb-Ti	-	-	He	4.4T					
1-R-1		NMR	resistive	solenoid	-	Cu	-	-	water	0.6T	Low	500	1950	>5	Desk top NMR for food testing, teaching etc
1-S-1		NMR	Superconducting		no	Nb-Ti	-	-	He		High	>5000		4	Bruker, Jeol, Varian, Wuhan
1-S-2		NMR	Superconducting		yes	Nb ₃ Sn	Nb-Ti	-	He	11.7T - 19T (500-800MHz)		>5000	1977		3 Bruker Jeol, Varian
M-S-3		NMR	Superconducting		yes	Nb ₃ Sn		-	He	21T (900MHz)	Low	50			3 Bruker, Jeol , Varian
1-S-4		NMR	Superconducting		yes	Nb ₃ Sn	Nb-Ti	-	He 2K	23.5T (1GHz)	Low	5	2009		2 Bruker, Jeol (1)
1-S-5		NMR	Superconducting		yes	YBCO	Nb ₃ Sn	Nb-Ti	He 2K	28.2T (1.2GHz)	Low	<5			1 Bruker
R-R-1		MR	resistive	solenoid multicoi	no	Cu			water	0.35T	Low	few 10	1977		Generally obsolete as s/n very low
R-P-1		MR	Permanent	axial field	-	NIL TO	2	-	none	2T	A de alle con	100			Mostly in China
R-S-1 R-S-2		MR MR	Superconducting	Split multicoil	no	Nb-Ti MgB ₂	-	-	He conduction	0.35T	Medium Medium	30 5		1	Viewray MR guided RT
		MR	Superconducting Superconducting	Split pair solenoid multicoil	no yes	MgB ₂ Nb-Ti	Nb-Ti	-	conduction He	0.51 1.5T	High	>20000		10+	Standard MRI system now manufactured in Europe, North America, China, Japan an
R-S-3 R-S-4		MR	Superconducting	solenoid multicoi	yes yes	ND-Ti ND-Ti	ND-11 Nb-Ti	-	He conduction		High Low	>20000		10+	Standard MRI system now manufactured in Europe, North America, China, Japan an Verv recently developed
₹-5-4 ₹-S-5		MR		solenoid multicoi	yes	Nb-Ti	Nb-Ti		He	3.0T	High	>3000		4 5+	Approx 20% of systems sold now 3T (High Field)
R-S-6		MR		solenoid multicoi	yes	Nb-Ti	Nb-Ti	-	Не	7.0T	Medium	>3000		3	GE, Siemens, Agilent, Tesla
R-S-7		MR	Superconducting		yes	Nb-Ti	Nb-Ti	-	He	9.4T	Low	15		3	GE, Agilent, Tesla
R-S-8		MR	Superconducting		yes	Nb-Ti	Nb-Ti	-	He 2K	10.5T	Low	1	2013	ĭ	Agilent
R-S-9		MR	Superconducting		yes	Nb-Ti	Nb-Ti	-	He 2K	11.7T	Low	2		2	Agilent, CEA
R-S-10		MR	Superconducting		yes	Nb ₃ Sn	Nb-Ti	-	He	14T	Low	0		1	No whole body only small bore
R-S-11		MR	Superconducting		yes	Nb ₃ Sn	Nb-Ti	-	He 2K	16.4T	Low	0		1	No whole body only small bore
A-R-1		Cyclotron accelerator	resistive	sector dipole	1	Cu	-	-	water		Medium	100			
A-S-1		Cyclotron accelerator	Superconducting		no	Nb-Ti	-	-	conduction	4.6T	Medium	5			onetix (supercompact)
\-S-2		Cyclotron accelerator	Superconducting	sector dipole	no	Nb-Ti	-	-	conduction	5.74T	Medium				
A-S-3		Cyclotron accelerator	Superconducting	sector dipole	no	Nb ₃ Sn	-	-	He	8T	Low	10			Mevion
		FTMS	Superconducting		no	Nb-Ti	-	-	He	7T	Medium	20			
		FTMS	Superconducting	nested solenoid	ves	Nb ₃ Sn	Nb-Ti	-	He	12T	Low	10			
F-S-1 F-S-2 F-S-3		FTMS	Superconducting		yes	Nb ₃ Sn	Nb-Ti		He 2K	15T	Low	<5			

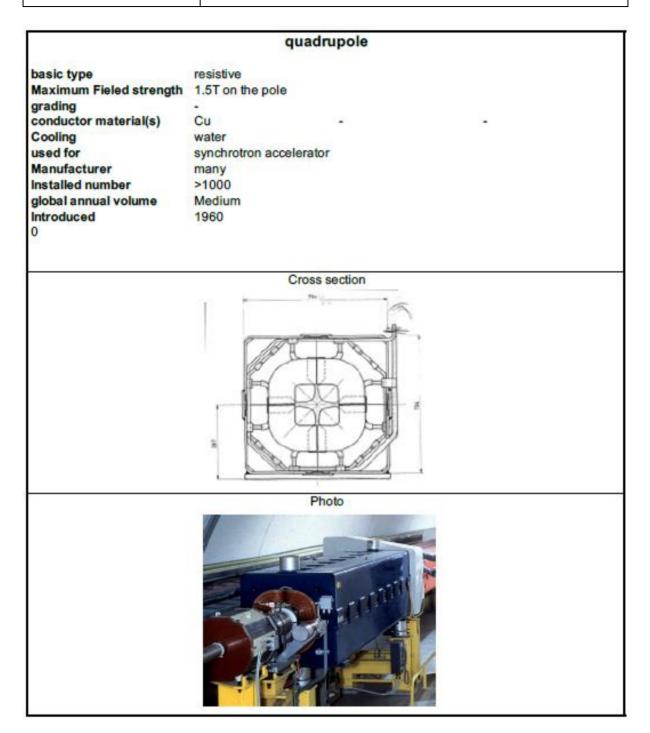
FuSuMaTech-2.1-DE-08-V1.0

6. <u>CATALOGUE</u>

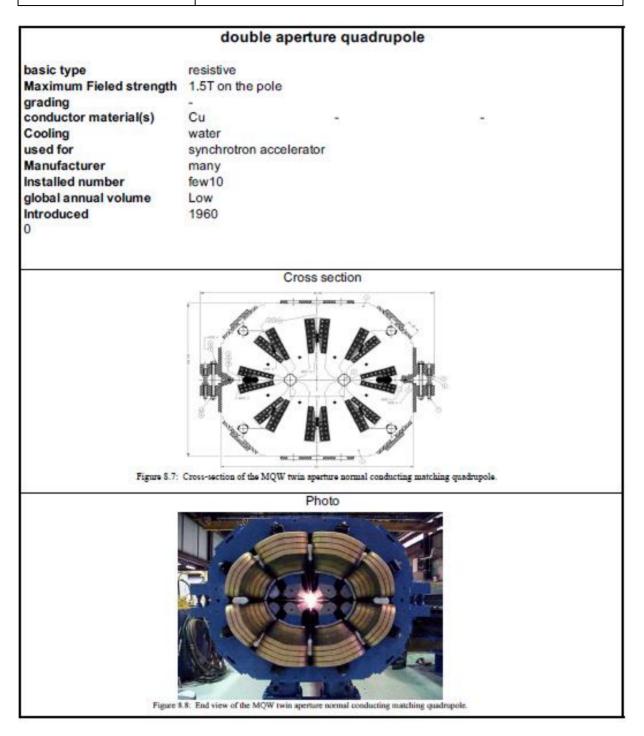


	H dipole
	Thuppite
basic type	resistive
Maximum Fieled strength	
grading conductor material(s)	•
conductor material(s)	Al
Cooling used for	water
used for	synchrotron accelerator
Manufacturer	many
Installed number	few 100
global annual volume	Low
Introduced	1960
0	
	Cross section
	01033 3001011
	Photo

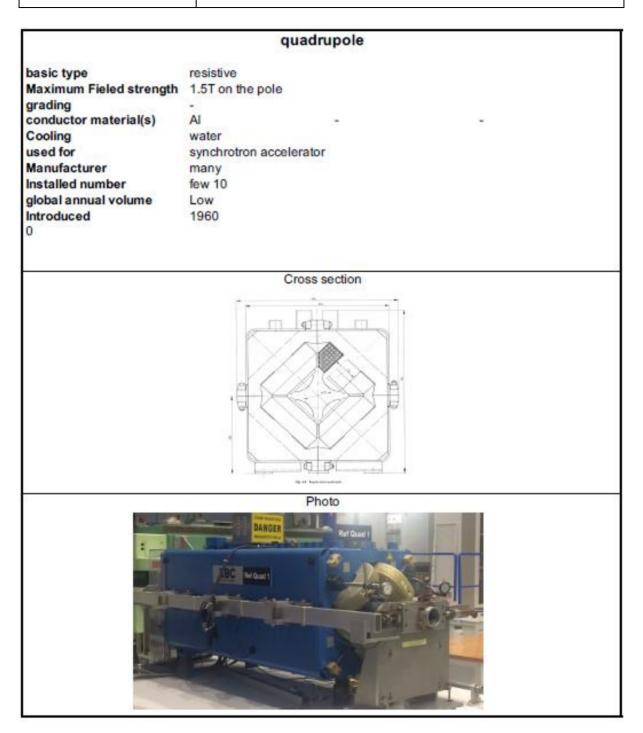
hasic type resistive Maximum Fieled strength 1.6T grading under the synchrotron accelerator Manufacturer many installed number >100 global annual volume Medium introduced 1960 0		C dip	ole
Maximum Fieled strength 1.6T grading - conductor material(s) Cu - Cooling water used for synchrotron accelerator Manufacturer many Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section Photo		an al affirm	
grading - conductor material(s) Cu - Cooling water used for synchrotron accelerator Manufacturer many Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section			
Cooling water Used for synchrotron accelerator Manufacturer many Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section Photo			
Cooling water used for synchrotron accelerator Manufacturer many Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section Photo	grading		
used for synchrotron accelerator Manufacturer many Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section			
Manufacturer many Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section Photo			
Installed number >1000 global annual volume Medium Introduced 1960 0 Cross section Photo			
global annual volume Medium Introduced 1960 O Cross section Photo			
Introduced 1960 Cross section Photo			
Cross section Photo			
Cross section Photo		1900	
Photo			
Photo		Cross s	ection
		Pho	to
		Pho	rto
		Pho	nto
		Pho	to
		Pho	nto
D DEPENDENT DE TRANSFORMENT		Pho	nto
DATE AND		Pho	to
		Pho	to
		Pho	to

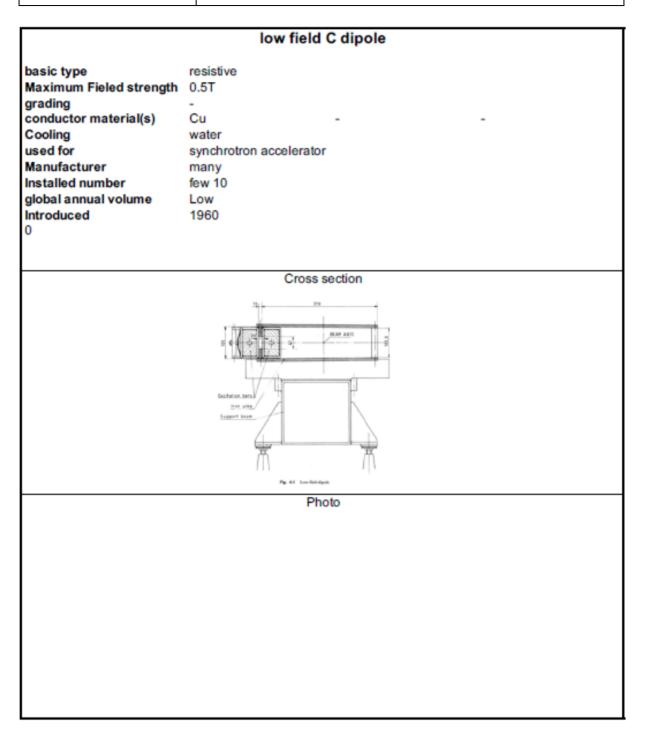


	combined function dipole
basic type	resistive
Maximum Fieled strength	
grading	
conductor material(s)	Cu
Cooling	water
used for	synchrotron accelerator
Manufacturer	many
Installed number	few 100
global annual volume	Low
Introduced	1959
0	
	Cross section
	Photo



	combin	ed function dipo	le	
	and the second second			
basic type	resistive			
Maximum Fieled strength	1.6T			
grading	1.			
conductor material(s)	AI	-		
Cooling	water	and a second		
used for	synchrotron acc	elerator		
Manufacturer	many			
Installed number	few 100			
global annual volume	Low			
Introduced	1959			
0				
		Cross section		
		Photo		





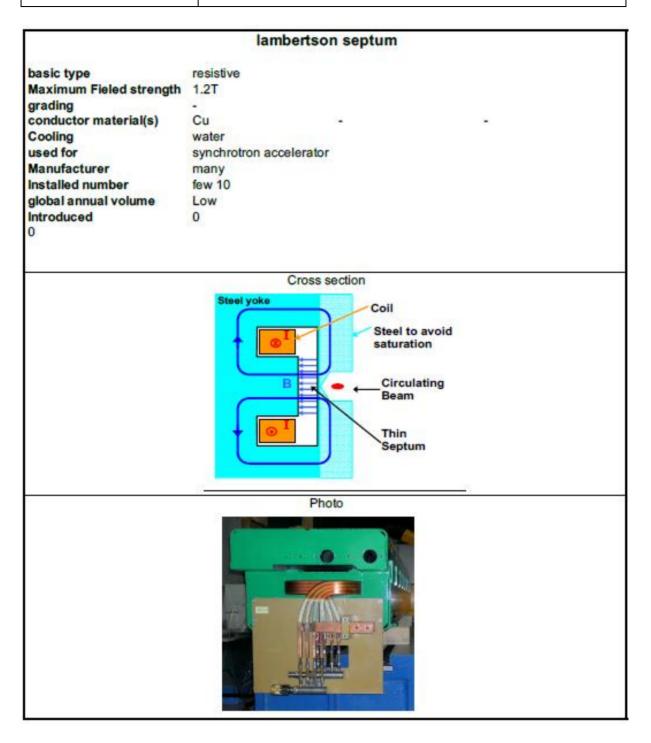
	sextupole	
basic type	resistive	
Maximum Fieled strength		
grading		
conductor material(s)	Cu	
Cooling	water	
used for	synchrotron accelerator	
Manufacturer		
Installed number	many few 10	
global annual volume	Low	
Introduced 0	1960	
	Cross section	
	Photo	

Maximum Fieled strength grading conductor material(s) Cooling used for Manufacturer Installed number	resistive 1T on the pole - Cu - water synchrotron accelerator
Maximum Fieled strength grading conductor material(s) Cooling used for Manufacturer Installed number	1T on the pole Cu water synchrotron accelerator
grading conductor material(s) Cooling used for Manufacturer Installed number	- Cu water synchrotron accelerator
conductor material(s) Cooling used for Manufacturer Installed number	water synchrotron accelerator
Cooling used for Manufacturer Installed number	water synchrotron accelerator
used for Manufacturer Installed number	synchrotron accelerator
Manufacturer Installed number	
Installed number	
	many
global annual volume	few 10
	Low
Introduced 0	1960
	Cross section
	Photo
H. W. CHARLES	
- Consult /	
in the second	
	And Annual Party Descent Sector

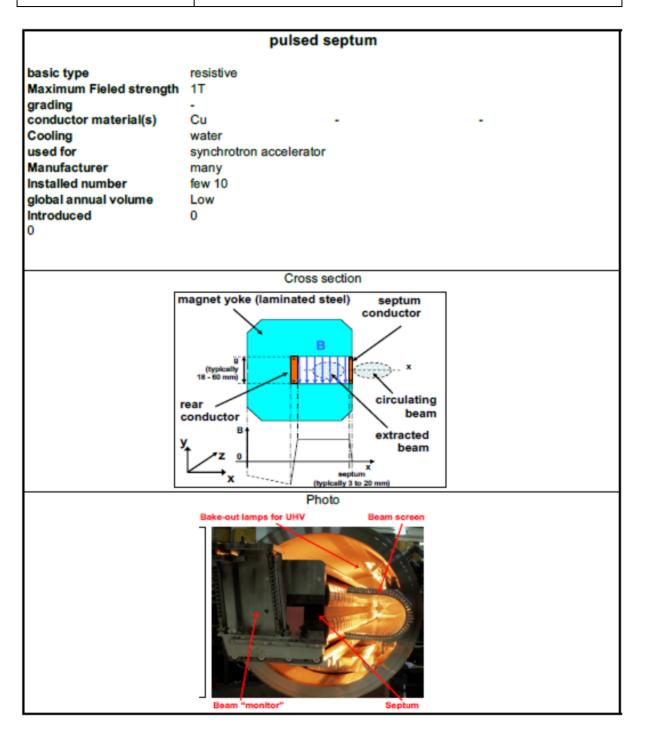
	corrector dipole
basic type	resistive
Maximum Fieled strength	
grading	
conductor material(s)	Cu
Cooling	air
used for	synchrotron accelerator
Manufacturer	many
installed number	few 100
global annual volume	Low
Introduced	1960
0	
	Cross section
	Photo

	corrector quadupole
basic type	resistive
Maximum Fieled strength	
grading	-
conductor material(s)	Cu
Cooling	air
used for	synchrotron accelerator
Manufacturer	many
Installed number	few 10
global annual volume	Low
Introduced	1960
0	1960
Č .	
	Cross section
	01033 3001011
	Photo
	FILOLO

	HO corrector
basic type	resistive
Maximum Fieled strength	
grading	-
conductor material(s)	Cu
Cooling	air
used for	synchrotron accelerator
Manufacturer	many
Installed number	few 10
global annual volume	Low
Introduced	1960
0	
-	
	Cross section
	Photo



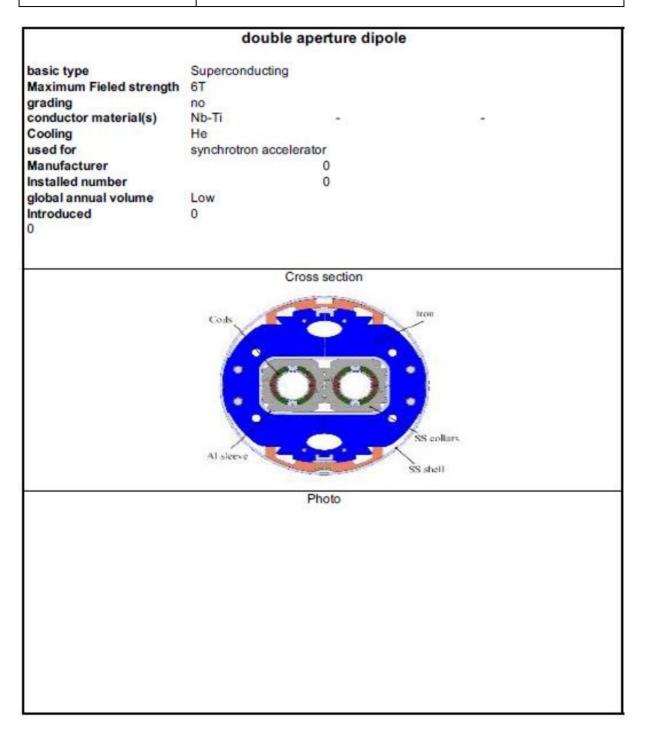
	focusing solenoid
basic type Maximum Fieled strength grading conductor material(s) Cooling used for Manufacturer Installed number global annual volume Introduced 0	resistive
	Cross section
	Photo



	too	cusing solenoid		
basic type	resistive			
Maximum Fieled strength				
maximum Fieled Strength				
grading conductor material(s)	- Cu			
	water		ā.	
Cooling used for	synchrotron ac	a la ratar		
Manufacturer		celerator		
	many			
Installed number	few 100			
global annual volume	Low			
Introduced	0			
0				
		Cross section		
5		Photo		
2		Photo		
		Photo		

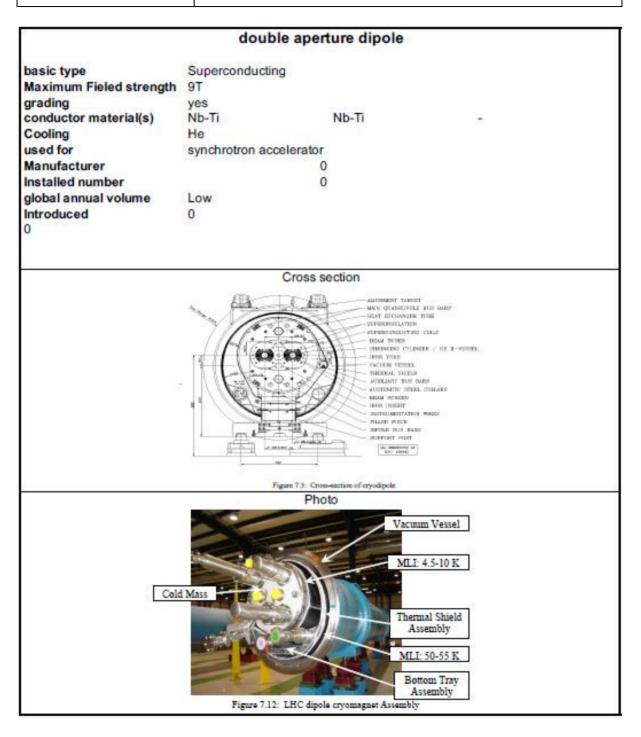
	wiggler
basic type Maximum Fieled strength grading conductor material(s) Cooling used for Manufacturer Installed number global annual volume Introduced 0	resistive 2T - Cu/Al water synchrotron accelerator many few 100 Medium 1966
	Cross section
	Photo

Maximum Fieled strength grading conductor material(s) Cooling used for	permanent 0.5T - 0 none
Maximum Fieled strength grading conductor material(s) Cooling used for	0.5T
grading conductor material(s) Cooling used for	
conductor material(s) Cooling used for	
Cooling used for	
used for	HOHO
	synchrotron accelerator
	many
	few 100
	Medium
	1953
0	1955
	Cross section
	Photo

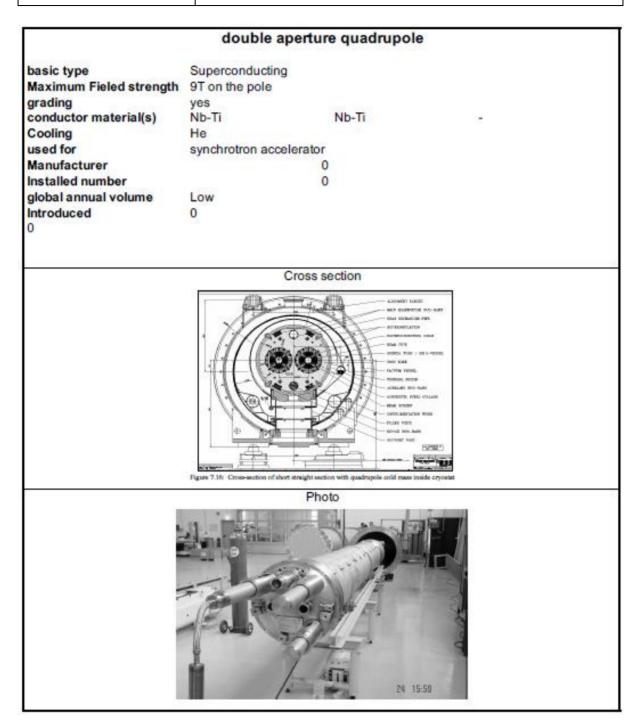

F

	sextupole
basic type	permanent
Maximum Fieled strength	
grading conductor material(s)	- 0
Cooling	none
used for	synchrotron accelerator
Manufacturer	0
Installed number	0
global annual volume	0
Introduced	0
0	
	Cross section
	Cross section
	Photo

	dipole
basic type	Superconducting
Maximum Fieled strength	
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	synchrotron accelerator
Manufacturer	0
Installed number	0
global annual volume	Low
Introduced	0
0	
	Cross section
	Photo



	dipo	le
basic type	Superconducting	
Maximum Fieled strength grading		
conductor material(s)	yes Nb-Ti	Nb-Ti -
Cooling	He	-
used for	synchrotron accelerator	
Manufacturer	0	
Installed number	õ	
global annual volume	Low	
Introduced	0	
0		
	Cross se	ction
	Phot	0



		quadrupole		
basic type	Superconductin	20		
Maximum Fieled strength	9T on the nole	' 9		
grading	yes			
conductor material(s)	Nb-Ti	Nb-Ti		
Cooling	He			
used for	synchrotron acc	celerator		
Manufacturer	oynom ou on abo	0		
Installed number		0		
global annual volume	Low			
Introduced	0			
0				
		Cross section		
		Photo		
	2	Photo		
2		Photo		
		Photo		
	-	Photo		
-		Photo		
		Photo	adrepels nady for	

	sextupole
basic type	Superconducting
Maximum Fieled strength	
grading	no Nu Ti
conductor material(s)	Nb-Ti
Cooling	He
used for Manufacturer	synchrotron accelerator
Installed number	0 0
global annual volume	Low
Introduced	0
0	v
*	
	Cross section
	Photo

		octupole		
hasis turns	Cuparageduction			
basic type	Superconducting			
Maximum Fieled strength				
grading	no Niti Ti			
conductor material(s)	Nb-Ti		-	
Cooling	He			
used for	synchrotron acc			
Manufacturer		0		
Installed number	1120-00-00-00-00	0		
global annual volume	Low			
Introduced	0			
0				
		Cross section		
		Photo		

Maximum Fieled strength 1.4 grading no conductor material(s) Nb Cooling He used for system Manufacturer Installed number	no Nb-Ti He synchrotron accelerator 0 0
Maximum Fieled strength 1.4 grading no conductor material(s) Nb Cooling He used for sy Manufacturer Installed number global annual volume Lo Introduced 0	I.4T on the pole Nb-Ti - He synchrotron accelerator 0 0 0
grading no conductor material(s) Nb Cooling He used for syi Manufacturer Installed number global annual volume Lo Introduced 0	no Nb-Ti - He synchrotron accelerator 0 0
conductor material(s) Nb Cooling He used for sy Manufacturer Installed number global annual volume Lo Introduced 0	Nb-Ti - He synchrotron accelerator 0 0
Cooling He used for sy Manufacturer Installed number global annual volume Lo Introduced 0	He synchrotron accelerator 0 0 .ow
used for sy Manufacturer Installed number global annual volume Lo Introduced 0	synchrotron accelerator 0 0 .ow
Manufacturer Installed number global annual volume Lo Introduced 0	0 0 .ow
Ins <mark>talled number</mark> global annual volume Lo Introduced 0	ow D
global annual volume Lo Introduced 0	Low D
Introduced 0	
	¥2
	Cross section
	Cross section
	Cross section
	Photo
and the second	
107 11 201	
ALA - ALA	
	lating
	d and a second s
E Latter	
A	TRADUCT OF TRADE
-H	

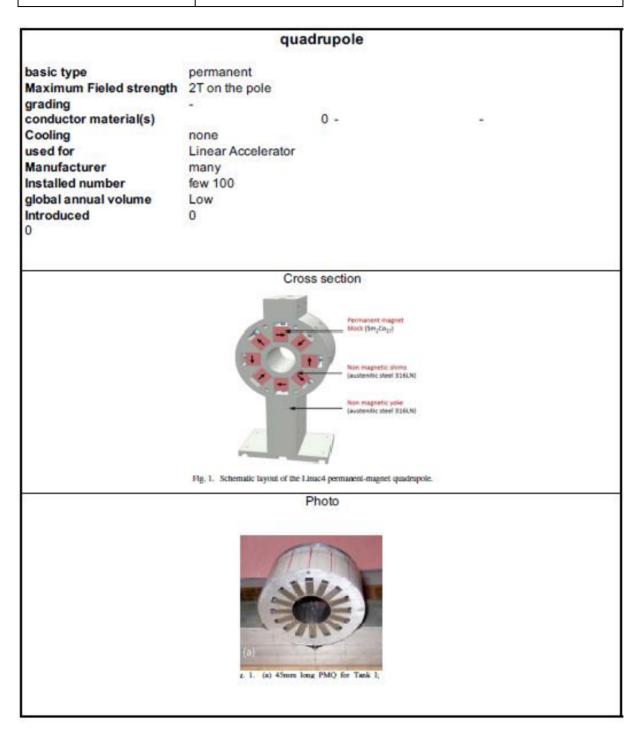
e	dipole		
basic type	Superconducting		
aximum Fieled strength 14.6T			
grading	no		
conductor material(s)	Nb3Sn		
Cooling	Не		
used for	synchrotron accelerator		
Manufacturer	0		
Installed number	0		
global annual volume	Low		
Introduced	0		
0			
	Cross section		
	Photo		

FuSu

	quadrupole
basic type	Superconducting
Maximum Fieled strength	
grading	no
conductor material(s)	Nb3Sn
Cooling	He
used for	synchrotron accelerator
Manufacturer	0
Installed number	0
global annual volume	Low
Introduced	0
0	
	Cross section
	Photo
	Large Magnet

	focusing solenoid
	locusing solenoid
basic type	Superconducting
Maximum Fieled strength	4T
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	synchrotron accelerator
Manufacturer	0
Installed number	0
global annual volume	Low
Introduced	0
0	
	Cross section
	Cross section
	Photo

	focusing solenoid
	locusing overload
basic type	Superconducting
Maximum Fieled strength	
grading	no
conductor material(s)	Nb3Sn
Cooling	He
used for	synchrotron accelerator
Manufacturer	0
Installed number	0
global annual volume	Low
Introduced	0
0	
	Cross section
	Cross section
	Photo



	Pipetron dipole
basic type	Superconducting
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	synchrotron accelerator
Manufacturer	0
Installed number	0
global annual volume	Low
Introduced	0
0	
	Orace continu
	Cross section
	Photo

	wiggler
basic type	Superconducting
Maximum Fieled strength	
grading conductor material(s)	- Nb-Ti
Cooling	He
used for	synchrotron accelerator
Manufacturer	many
Installed number	few 100
global annual volume	Low
Introduced	0
0	
	Cross section
	Cross section
	Photo

	solenoid
	301011010
basic type	resistive
Maximum Fieled strength	2T
grading	
conductor material(s)	Cu
Cooling	water
used for	Linear Accelerator
Manufacturer	many
Installed number	>1000
global annual volume	Medium
Introduced	0
0	
	Cross section
	Photo
	1100

	solenoid
basic type Maximum Fieled strength grading conductor material(s) Cooling used for Manufacturer Installed number global annual volume Introduced 0	Superconducting 4T - Nb-Ti - He Linear Accelerator many few 10 Low 0
	Cross section
Photo	

	spe	ctrometer dipole	
basic type	resistive		
Maximum Fieled strength			
grading	-		
conductor material(s)	Cu		
Cooling	water	27.0	
used for	particle spectro	meter	
Manufacturer	paracie speciro	0	
Installed number		ō	
global annual volume		õ	
Introduced	0	×	
0	0		
		Cross section	
		Photo	

	spectrometer solenoid
	spectrometer solenoid
basic type	resistive
Maximum Fieled strength	
grading	-
conductor material(s)	Cu
Cooling	water
used for	particle spectrometer
Manufacturer	0
Installed number	0
global annual volume	0
Introduced	0
0	
	Cross section
	Photo

FuSuM

	spectrometer dipole
basic type	Superconducting
Maximum Fieled strength	2T
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	particle spectrometer
Manufacturer	0
Installed number	0
global annual volume	0
Introduced	0
0	
	Cross section
	Photo

	spectrometer solenoid
basic type	Superconducting
Maximum Fieled strength	
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	particle spectrometer
Manufacturer	0
Installed number	0
global annual volume	0
Introduced	0
0	U
0	
	Cross section
	Photo

	spectrometer toroid
	Spectre tereta
basic type	resistive
Maximum Fieled strength	1T
grading	-
conductor material(s)	Cu
Cooling	water
used for	particle spectrometer
Manufacturer	0
Installed number	0
global annual volume	0
Introduced	0
0	
	Orace eachier
	Cross section
	Photo

7	spectrometer toroid
basic type Maximum Fieled strength grading conductor material(s) Cooling used for Manufacturer Installed number global annual volume Introduced 0	Superconducting 4.4T no Nb-Ti He particle spectrometer 0 0 0
	Cross section
	Photo

solenoid		
		solellolu
basic type	resistive	
Maximum Fieled strength		
grading	-	
conductor material(s)	Cu	
Cooling	water	
used for	NMR	
Manufacturer	>5	
Installed number		500
global annual volume	Low	
Introduced	1950	
Desk top NMR for food testi	ng, teaching etc	
		Cross section
		Director
		Photo

	nested solenoid
	nesteu solenolu
basic type	Superconducting
Maximum Fieled strength	
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	NMR
Manufacturer	4
Installed number	>5000
global annual volume	High
Introduced	1962
Bruker, Jeol, Varian, Wuhar	1
	Cross section
	Photo

r		
	nested soleno	bid
basis tuna	Superconduction	
basic type	Superconducting	
grading	11.7T - 19T (500-800MHz)	
conductor material(s)	yes Nb3Sn Nb-Ti	
Cooling	He	-
used for	NMR	
Manufacturer	3	
Installed number	>5000	
global annual volume	High	
Introduced	1977	
Bruker Jeol, Varian		
	Cross section	
	Photo	
	Filoto	

	nested	solenoid
	nesteu	Solenolu
basic type	Superconducting	
Maximum Fieled strength		
grading	yes	
conductor material(s)	Nb3Sn	Nb-Ti -
Cooling	He	
used for	NMR	
Manufacturer		3
Installed number		50
global annual volume	Low	
Introduced	2000	
Bruker, Jeol, Varian		
	Cros	s section
	P	hoto

	nested	solenoid
basic type	Superconducting	
Maximum Fieled strength	23.5T (1GHz)	
grading	yes	
conductor material(s)	Nb3Sn	Nb-Ti -
Cooling	He 2K	
used for	NMR	
Manufacturer		2
Installed number		5
global annual volume	Low	
Introduced	2009	
Bruker, Jeol (1)		
	-	
	Cross	section
	PF	noto

	nested s	olenoid	
basic type	Superconducting		
Maximum Fieled strength			
grading	yes	NI-20-	NIN TO
conductor material(s)	YBCO He 2K	Nb3Sn	Nb-Ti
Cooling used for	NMR		
Manufacturer		1	
Installed number	<5		
global annual volume	Low		
Introduced	0		
Bruker	0		
- and			
	Cross	section	
	Ph	oto	
	Ph	010	

		solenoid multicoil		
has in turns				
basic type	resistive			
Maximum Fieled strength				
grading conductor material(s)	no Cu		0	0
			0	0
Cooling	water			
used for Manufacturer	MRI			
Installed number	6au 40	0		
	few 10			
global annual volume Introduced	Low			
	1977			
Generally obsolete as s/n ve	Bry low			
		Cross section		
		0.000 000000		
		Photo		

	axial field	
basic type	Permanent	
Maximum Fieled strength		
grading	-	
conductor material(s)	- 0	
Cooling used for	none MRI	
Manufacturer	0	
Installed number	100	
global annual volume	0	
Introduced	0	
Mostly in China		
	Cross section	
	Photo	
	FILOLO	

	Split multicoil
basic type	Superconducting
Maximum Fieled strength	0.35T
grading	no
conductor material(s)	Nb-Ti
Cooling	He
used for	MRI
Manufacturer	1
Installed number	30
global annual volume	Medium
Introduced	0
Viewray MR guided RT	
	Cross section
	Cross section
	Photo

Split pair		
basic type	Superconducting	
Maximum Fieled strength		
grading	no	
conductor material(s)	MgB2	
Cooling	conduction	
used for	MRI	
Manufacturer	0	
Installed number	5	
global annual volume	Medium	
Introduced	0	
0		
	Cross section	
	01000 000001	
	Photo	

solenoid multicoil		
hasis tuns	Superconducting	
basic type Maximum Fieled strength	Superconducting	
grading	yes	
conductor material(s)	Nb-Ti -	
Cooling	He	
used for	MRI	
Manufacturer	10+	
Installed number	>20000	
global annual volume	High	
Introduced	1985	
	manufactured in Europe, North America, China, Japan and Korea	
	······································	
	Cross section	
	-	
Photo		

solenoid multicoil			
basic type	Superconducting		
Maximum Fieled strength	1.5T		
grading	yes		
conductor material(s)	Nb-Ti -		
Cooling	conduction		
used for	MRI		
Manufacturer	4		
Installed number	10		
global annual volume	Low		
Introduced	2013		
Very recently developed			
	Cross section		
	Photo		

solenoid multicoil			
	solehold if	lutticon	
basic type	Superconducting		
Maximum Fieled strength			
grading	yes		
conductor material(s)		Nb-Ti -	
Cooling	He		
used for	MRI		
Manufacturer	5+		
Installed number	>3000		
global annual volume	High		
Introduced	1990		
Approx 20% of systems solo	d now 3T (High Field)		
	Cross se	ction	
	Phote	0	
		-	
1			

	solenoid multicoil
	solehold maricon
basic type	Superconducting
Maximum Fieled strength	
grading	yes
conductor material(s)	Nb-Ti -
Cooling	He
used for	MRI
Manufacturer	3
Installed number	75
global annual volume	Medium
Introduced	2000
GE, Siemens, Agilent, Tesla	
	Cross section
	Closs section
	Photo

nested solenoid			
	nesteu	Solenoid	
basic type	Superconducting		
Maximum Fieled strength			
grading	yes		
conductor material(s)	Nb-Ti	Nb-Ti -	
Cooling	He		
used for	MRI		
Manufacturer		3	
Installed number		5	
global annual volume	Low		
Introduced	2005		
GE, Agilent, Tesla			
	Cross	section	
	Pł	noto	

nested solenoid			
basic type	Superconducting		
Maximum Fieled strength	10.5T		
grading	yes		
conductor material(s)	Nb-Ti	Nb-Ti -	
Cooling	He 2K		
used for	MRI		
Manufacturer	1		
Installed number	1	l	
global annual volume	Low		
Introduced	2013		
Agilent			
	Cross s	ection	
	01033 3	Boaton	
	Pho	oto	

nested solenoid			
basic type	Superconducting		
Maximum Fieled strength			
grading	yes		
conductor material(s)	Nb-Ti	Nb-Ti -	
Cooling	He 2K		
used for	MRI		
Manufacturer		2	
Installed number		2	
global annual volume	Low		
Introduced Agilent, CEA	2013		
Agrient, CEA			
	Cross	section	
	Ph	noto	

nested solenoid			
	nesteu st	henold	
basic type	Superconducting		
Maximum Fieled strength			
grading	yes		
conductor material(s)	Nb3Sn	Nb-Ti -	
Cooling	He		
used for	MRI		
Manufacturer	1		
Installed number	0		
global annual volume	Low		
Introduced	0		
No whole body only small b	ore		
	Cross se	ection	
	Pho	to .	
	Pho	0	
1			

	nested so	lanaid
	nested so	Dienoid
basic type	Superconducting	
Maximum Fieled strength		
grading	yes	
conductor material(s)	Nb3Sn	Nb-Ti -
Cooling	He 2K	
used for	MRI	
Manufacturer		
Installed number	0	
global annual volume	Low	
Introduced	0	
No whole body only small b		
	Cross se	ection
	Pho	to

	sector dipole
basic type	resistive
Maximum Fieled strength	
grading	0
conductor material(s)	Cu
Cooling	water
used for	
Manufacturer	Cyclotron accelerator
	0
Installed number	100
global annual volume	Medium
Introduced 0	0
0	
	Orașe an dine
	Cross section
	Photo
	Photo Field State

	sector dipole
	sector upole
basic type	Superconducting
Maximum Fieled strength	
grading	no
conductor material(s)	Nb-Ti
Cooling	conduction
used for	Cyclotron accelerator
Manufacturer	0
Installed number	5
global annual volume	Medium
Introduced	0
lonetix (supercompact)	
	Cross section
	Photo

	sector dipole
basic type	Superconducting
Maximum Fieled strength	5.74T
grading	no
conductor material(s)	Nb-Ti
Cooling	conduction
used for	Cyclotron accelerator
Manufacturer	0
Installed number	0
global annual volume	Medium
Introduced	0
0	
	LAND CONTRACTOR
	Cross section
2	Photo

Deliverable 2.1 - REPORT ON STATE OF THE ART SUPERCONDUCTING MAGNETS

FuSuMaTech-2.1-DE-08-V1.0

sector dipole					
basic type	Superconducting				
Maximum Fieled strength	8T				
grading	no				
conductor material(s)	Nb3Sn				
Cooling	He				
used for	Cyclotron accelerator				
Manufacturer	0				
Installed number	10				
global annual volume	Low				
Introduced	0				
Mevion					

Cross section

Photo

FuSuMaTech

nested solenoid						
basic type	Superconducting					
Maximum Fieled strength	7T					
grading	no					
conductor material(s)	Nb-Ti					
Cooling	He					
used for	FTMS					
Manufacturer	0					
Installed number	20					
global annual volume	Medium					
Introduced	0					
0						
	Orace continu					
Cross section						
	Photo					

nested solenoid						
	1103104 301					
basic type	Superconducting					
Maximum Fieled strength	12T					
grading	yes					
conductor material(s)		Nb-Ti -				
Cooling	He					
used for	FTMS					
Manufacturer	0					
Installed number	10					
global annual volume	Low					
Introduced	0					
0						
	Cross sor	tion				
Cross section						
	Photo)				

nested solenoid						
basic type	Superconducting					
Maximum Fieled strength						
grading	yes					
conductor material(s)	Nb3Sn	Nb-Ti -				
Cooling	He 2K					
used for	FTMS					
Manufacturer		0				
Installed number	<5					
global annual volume	Low					
Introduced	0					
0						
	Cross	section				
	0.000	000001				
	Ph	noto				