

FuSuMaTech-5.Y-DE-19-V1.0

Future Superconducting Magnet Technology

H2020-FETOPEN-2016-2017/H2020-FETOPEN-3-2017

Grant Agreement Number n° 766974

DELIVERABLE D 5.6

SYNTHESIS AND ORIENTATION REPORT FOR DEVELOPMENT OF TECHNOLOGY AND INDUSTRIAL APPLICATIONS

	Edited by	Revie	ewed by	Approved by
Name	Antoine Daël	Sylvain Roux		Antoine Daël
Functions	Project Coordinator (CEA)	Project Manager (CEA)		Project Coordinator (CEA)
Date and visas	15/04/2019	16/04/2019		16/04/2019

	HISTORY OF CHANGES														
Version	Publication date	Change	Edited by	Reviewed by	Approved by										
1.0	15/04/2019	Final version	Antoine Daël	Sylvain Roux	Antoine Daël										

	PROJECT DELIN	/ERABLE INFORMATION SHEET
	Project Reference	N° 766974
	Project Title	FuSuMaTech - Future Superconducting Magnet Technology
	Project website	http://fusumatech.web.cern.ch
	Deliverable No	5.6
FuSuMaTech Project	Deliverable type	Report
	Dissemination Level	Public
	Contractual Delivery Date	22/04/2019
	Actual Delivery Date	17/04/2019
	EC Project Officer	Adriana GODEANU-METZ

FuSuMaTech-5.Y-DE-19-V1.0

TABLE OF CONTENTS

Tab	le of contents	3
1.	INTRODUCTION	4
2.	ARCHITECTURE OF WP5	4
3.	ORGANISATIONAL GUIDELINES OF FuSuMaTech WP5	5
4.	SYNTHESIS OF PROPOSALS	6
5.	COMMENTS ON THE WP5 OUTCOME TASK PER TASK	7
6.	OVERALL ROADMAP	8
7.	CONCLUSION	11

1. INTRODUCTION

This report is analyzing the overall process of the Work Package 5 of FuSuMaTech Phase 1 "Setting up technology Pilots" and give a feedback on the methodology. This report contributes to foster innovation in the domain by setting up new situations for synergy between Academic Research and Industry.

Technology development relies on two pilars:

-Basic knowledge of phenomena and material properties usually called under the R&D acronym.

-Realisation of technology pilots or prototypes based on functional specifications in view of applications.

These two ways of progress are complementary and FuSuMaTech has been oriented from the beginning to use them both.

2. ARCHITECTURE OF WP5

The present deliverable is a synthesis of this second pilar in FuSuMaTech. **WP5 - Setting up technology Pilots**

The architecture of FuSuMaTech WP5 is the following:

T5.1: Preparation of proposal for MgB2 Technology demonstrator **Task leader: Sigmaphi**

T5.2: Preparation of proposal for Frontier edge High-field MRI 16 T concept magnet **Task leader: CEA**

T5.3: Preparation of proposal for investigation of innovative magnetic configurations for emerging MRI applications **Task leader: ELYTT**

T5.4: Preparation of proposal for technology demonstrator of an HTS insert for HFML **Task leader: BNG**

T5.5: Preparation of proposal for gradient coils technology for high-field MRI, over 10 T Task leader: Tesla

FuSuMaTech-5.Y-DE-19-V1.0

3. ORGANISATIONAL GUIDELINES OF FUSUMATECH WP5

The organisation guidelines of FuSuMaTech WP5 are the following:

- All the task leaders of WP5 belong to Industry (except the task 5.2 led by CEA for a more than challenging project but it includes major industry partners).
- As defined at the origin of FuSuMaTech, main applications are medical applications with high field.
- Development of SC conductors is not directly included in WP5 as far as other actions have been already implemented in particular by CERN.
- No prototyping in the high field accelerator magnets is included as this programme is already developed by CERN.

4. SYNTHESIS OF PROPOSALS

The 5 proposals (Deliverables from 5.1 to 5.5) are presented according to the following summary.

1. <u>EXCELLENCE</u>

- 1.1 Context and Objectives
- 1.2 Description
- 1.3 Ambition (Innovation, technological breakdown)

1.4 Concept and Methodology (Integration in the FuSuMaTech Initiative Methodology, Collaboration between Academics, Links with other FuSuMaTech Sub-Projects)

2. <u>IMPACT</u>

- 2.1 Expected Impact
- 2.2 Potential Applications / market

3. <u>IMPLEMENTATION</u>

- 3.1 Technology Status (State of the art / project choices)
- 3.2 Work plan and Roadmap for development
 - 3.2.1 List of Sub-Task
 - 3.2.1.1 Sub-Task Description
 - 3.2.1.2 Sub-Task Resources (Manpower and material)
 - 3.2.2 Roadmap (including milestones / deliverables)
- 3.3 Consortium (Role, activity of each Partner within the Project)
- 3.4 IP Matrix Review and status

The estimation of the necessary funding is presented in the following table :

Task	5.1	5.2	5.3	5.4	5.5
Technology Pilot	MgB2 Dipole	MRI 16T	Mammo Magnet	HTS Insert	Gradient Coils
Estimated Budget	1844.K€	3450.K€	1575.K€	8205.K€	1422.К€
Remark	Functional magnet	Initial R&D Phase only	Initial R&D Phase only	Functional magnet	Initial R&D Phase only

5. <u>COMMENTS ON THE WP5 OUTCOME TASK PER TASK</u>

5.1. MgB2 TECHNOLOGY PILOT

The initial idea was to build up a 5 Teslas solenoid. As far as this development has almost already been carried out, the task has been reoriented with a "Gantry Dipole". The MgB₂ conductor characteristics and availability remain the central constraint of this task. The proposal De 5.1 has a very high degree of maturity.

5.2. FRONTIER EDGE HIGH FIELD MRI 16T CONCEPT MAGNET

Ultrahigh field MRI is now really emerging and a prospective for a 16 T MRI is relevant. The task description is concentrated on the following technical aspects:

- SC conductor development
- Winding technology in liaison with magnetic design
- Mechanical structure

Considering the very high level of technical challenges of the project, starting long time ahead of a realisation sounds the more realistic way.

5.3. SOCIAL MAGNET, OPEN MRI MAGNET, MAMMO MAGNET (CONCEPTUAL DESIGN)

Starting MRI magnet design from a simple list of functional requirements is a real challenge. Several structures have been envisaged for the two applications:

- Social magnet
- Mammo magnet

A three-year process of preliminary design is still required.

5.4. HIGH TEMPERATURE SUPERCONDUCTING INSERTS FOR HIGH-FIELD MAGNETS

This subject is strategic for the development of high field magnets in Europe both for:

- Accelerator magnets where the concept of HTS insert in a background field produced by LTS conductors is promising.
- High field magnets developed in the frame of the European collaboration EMFL.

The partners of the Task 5.4 have been working together for a few years on R&D subject related to HTS behaviour especially in the situation of magnet quenching.

The outcome of this task 5.4 is a very mature proposal and can be considered as ready for implementation.

5.5. GRADIENT COIL TECHNOLOGY FOR HIGH FIELD MRI, OVER 10T

The FuSuMaTech Phase 1 has stimulated operational contacts between the final users of the high field MRI ISEULT and European Gradient coils designer and manufacturer TESLA. These contacts have made possible the establishment of functional specifications and are opening the way for an R&D&I action.

6. OVERALL ROADMAP

The following table is an overall roadmap of the 5 Technology pilot actions.

		PR	EVISION		MAP FOR	WP 5.	.1							
FuSuMaTech Phase 1 (Final Workshop 1st April 2018)		Bridging A	ctivities (FP8 He	orizon 2020 Fundi		uSuN	1aTec	h Pha	se 2	n Europe I	Funding)			
	_													
		2020	2021	2022	2022	2023		2024	2	025	2026	20	027	2028
1.1 Evaluate superconducting wires 1.2 Wire manufacturing 2.1 Conceptual design 2.2 Final design 2.3 Demonstrator manufacturing 2.4 Demonstrator testing 3 Commercialisation plan	FU	POTENTIAL INDING FOR EALIZATION						сомі	MERCIAI	L APPLI	ICATION 8	MARKET	DEVELO	PMENT
FUNDING ALLOCATED SC WIRE DEFINED COMMERCIALISATION PLAN COMPLETED DEMONSTRATOR PRELIMINARY DESIGN SC WIRE DELIVERED DEMONSTRATOR FINAL DESIGN DEMONSTRATOR FISTED COMMERCIAL IMPACT SYNTHESIS				•			•							
	FOR HIG	H FIELI	D MRI CO	ONCEPT N	IAGNET W	HOLE	BOD	Y 16T	FuSu	MaTe	ch WP	5 TASK	5.2	
PREVISIONAL ROADMAP	FOR HIG	<mark>6H FIELI</mark>	D MRI CO	ONCEPT N							ech WP	<mark>5 TASK</mark>	5.2	
	FOR HIG				F			ch Ph	ase 2			5 TASK	5.2	
PREVISIONAL ROADMAP FuSuMaTech Phase 1	FOR HIG			ONCEPT N	F			ch Ph	ase 2		e Funding)	5 TASK	5.2	
PREVISIONAL ROADMAP FuSuMaTech Phase 1	FOR HIG				F		ИаТе	ch Ph	ase 2				2027	2028
PREVISIONAL ROADMAP	FOR HIG	Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2	zon Europ	e Funding)			
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2	zon Europ	e Funding)			
PREVISIONAL ROADMAP	FOR HIG	Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2	zon Europ	e Funding)			2028
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	2028
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	2028
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	2028
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	2028
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	2028
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	2028
PREVISIONAL ROADMAP FUNCTIONAL SPECIFICATIONS Ind Workshop 1st April 2009 FUNCTIONAL SPECIFICATIONS SUBSTRICT MACINETIC CONFIGURATIONS SUBSTRICT MECHANICAL STUDY ELECTRICAL STUDY (of superconducting colls) REALIZATION STUDY AND CRYOGENIC SOLUTION FCILIS PRINCIPLE NEEGRATION STUDY SYSTEMINITEGRATION WITH USERS SCENARID TECHNOLOGICLEVELOPMENT PROGRAM Ordutor Materials and Magnet Components		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	
PREVISIONAL ROADMAP		Bridging Ad	tivities (FP8 H	lorizon 2020 Fun	ling)	-uSuN	ИаТе	ch Pha	ase 2 FP9 Horiz	zon Europ 2025	e Funding)		2027	

FuSuMaTech-5.Y-DE-19-V1.0

	PREVISIONAL ROADMAP FOR Mam	moMagnet Fu	SuN	MaTech	WP5	TASK	5.3								
	FuSuMaTech Phase 1 (Final Workshop 1st April 2019)	FuSuMaTech Phase 2													
		Bridging Activities (FP8 Horizon 2020 Funding)													
				2019			2020			20	21		2022		
1	FUNCTIONAL SPECIFICATIONS														
2	FEASIBILITY STUDIES		-		+		-								
	MAGNET DEFINITION														
	MAGNET DESIGN														
	MECHANICAL STUDY														
	SUPERCONDUCTING WIRE STUDY														
	CRYOGENIC DESIGN STUDY														
	THERMAL CALCULATION														
3	INTEGRATION STUDY		+			+									
4	MANUFACTURING STUDIES		-				+								
5	MANUFACTURING FINAL DESIGN						+								
6	COST STUDY														

PREV	ISIONA	L RO	ADN	1AP	FOF	SOC		ЛA	GNET	Fus	SuMa	Тес	h WI	P5 1	ASK 5	.3							
																			_				
FuSuMaTech Phase 1 (Final Workshop 1st April 2019)									F	uS	SuMa	Тес	h Ph	nase	e 2								
		Bridgi	ng Activ	ities (FP8 Ho	rizon 2020) Fundiı	ng)						(FP9	Horizon Eu	rope	unding	3)					
		2019		202	20	202	1	_	2022	L	2023		2024		2025			2026	┶	202	7	<u> </u>	2028
FUNCTIONAL SPECIFICATIONS									year)														
2 MAGNETIC CONFIGURATIONS																							
2.1 B0 FIELD								_	ž														
2.2 GRADIENT FIELD				_			_	_	FOR REALIZATION														
MECHANICAL STUDY							_	-	μ														
MECHANICAESTODI				1 1	1			-	21														
ELECTRICAL STUDY (of superconducting coils)									EAI														
									¥						DUSTRIAL	DEAL	ICAT.	on (.					
5 REALIZATION STUDY AND CRYOGENIC SOLUTION									ő					IN	DUSTRIAL	REA	ISA III	JN (≈ :	s yea	rs)			
5 RF COILS PRINCIPLE				_				_	Z														
INTEGRATION STUDY								-	Ę														
INTEGRATION STUDT								-	FUNDING														
SYSTEM INTEGRATION WITH USERS SCENARIO								-	5														
									Ê														
TECHNOLOGICAL DEVELOPMENT PROGRAM									POTENTIAL														
									5														
TECHNOLOGICAL MODELS																							
B0 FIELD DESIGN STUDY CARRIED OUT	_				_			_				_										+	
PRELIMINARY DESIGN REVIEW			ΙY	1	4							-	-	-			_		-			+ +	
FINAL DESIGN REVIEW			1	1				Ó	>					-				-	-			+ +	
COST REVIEW		1 1	1 1	1 1				ð								1			-		_		

FuSuMaTech-5.Y-DE-19-V1.0

	Road map for FuSuMaTe	ch WP	5.	4	pr	op	20	sa	I									
		Year		Ye	ar 1			Yea	r 2		Y	ear 3	3	T	Ye	ar 4	П	
		Quarter						Q2 (Duration in month
		Month	3	6	9	12	15	18	21 2	24 2	7 30	33	36	39	42	45	48	
1	Topic 1: HTS insert to be tested in existing facility																	48
11	1a: Choice of optimized HTS material																	12
	Report comparing HTS material with respect to performance in HTS insert applications (D)				$\boldsymbol{<}$													
	Ideal conductor chosen and availability assured (M)				_													
12	1b: HTS insert coil design for existing hybrid magnet													L				18
	Design report describing HTS inserts for the existing CNRS hybrid magnets (D)								\diamond									
	Small diameter HTS insert design ready (M)									Ŷ								
	Large diameter HTS insert design ready (M)									\diamond								
13	1c: HTS insert coil design validation																	12
	Report on mock-up test results, conclusions drawn, and lessons learned (D)										\diamond							
	Critical design aspects of the HTS inserts validated (M)										1	\diamond						
14	1d: HTS insert coil manufacture and test																	18
	HTS insert coils completed (D)														2			
	Coils ready for testing (M)																	
	Testing results available (M)																	
	Report on testing results (D)																Q	
	Topic 2: All superconducting 40+ T magnet design																	
15	2a: All superconducting 40+ T magnet: Conceptual design																	24
	LTS coils conceptual design ready (M)								Q									
	HTS coils conceptual design ready (M)								\bigcirc									
	Design review (M)									<u>></u>								
	Conceptual design report describing all superconducting 40+ T magnet (D)									\diamond								
2	2b: Detailed design all superconducting 40+ T magnet: Detailed design																	24
21	LTS coils final design ready (M)													I				
	HTS coils final design ready (M)																>	
	Final design review (M)																>	
	Final design report describing all superconducting 40+ T magnet (D)																	· · · · · ·

PROVISIONA	IL ROADMAP	OR GRADIE	NT COIL T	rechnolo	GY FOR HIGH FIELD MRI (v2.0)	
FuSuMaTech Phase 1				Fu	SuMaTech Phase 2	
(Final Workshop 1st April 2019)						
	E	ridging Activities (Fur	nding?)		(FP9 Horizon Europe Funding)	
	2019	2020	2021	2022	2023 2024 2025 2026 2027	2028
				_		
1 FUNCTIONAL SPECIFICATIONS		+ $+$ $+$ $+$ $+$		-		
2 ELECTRO-MAGNETIC DESIGN		+ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$	-		
2.1 GRADIENT FIELD				ear)		
2.2 HIGH ORDER SHIM COIL FIELD				ye		
2.2 man order on we core need						
3 GRADIENT COIL MECHANICAL STUDY				<u>.</u>		
3.1 NOVEL MATERIALS			+ + + +	Z		
3.2 AN SYS MODELLING				- 2		
				REALIZATION		
4 GRADIENT/MAGNET INTERACTION STUDY						
4.1 LORENTZ FORCE IN TERACTION WITH MAGNET				- A		
4.2 EDDY CURRENT INTERACTION WITH MAGNET				~~~		
4.3 ACOUSTIC NOISE STUDY				FOR	INDUSTRIAL REALISATION (≈ 5 years)	
4.4 MECHANICAL EXCITATION OF MAGNET BY GRADIENT STUDY						
				9		
5 THERMAL STUDY				<u> </u>		
5.1 THERMAL MODEL				z		
5.2 CO OLING DESIGN						
6 RF COIL SYSTEM IN TERACTION				. I		
				z		
7 SYSTEM INTEGRATION WITH USERS SCENARIO				- E		
				POTENTIAL FUNDING		
8 TECHNOLOGICAL DEVELOPMENT PROGRAM				~		
9 FUNCTIONAL MODELS						
EM DESIGN STUDY CARRIED OUT						
PRELIMINARY DESIGN REVIEW FINAL DESIGN REVIEW PROTOTYPE COMPLETION						
FINAL DESIGN REVIEW				2		
			+ $+$ $+$ $+$	X		
COST REVIEW				9		

FuSuMaTech page 10/11 DE 5.6 – SYNTHESIS AND ORIENTATION REPORT FOR DEVELOPMENT OF TECHNOLOGY AND INDUSTRIAL APPLICATIONS V1.0

7. <u>CONCLUSION</u>

All the tasks of WP5 are resulting in promising proposals with high degree of maturity. Contacts with EU are planned to select adequate calls in view of implementation in the 2 or 3 coming years.